Metamath Proof Explorer


Definition df-estrc

Description: Definition of the category ExtStr of extensible structures. This is the category whose objects are all sets in a universe u regarded as extensible structures and whose morphisms are the functions between their base sets. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv we do not need to restrict the universe to sets which "have a base". Generally, we will take u to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Proposed by Mario Carneiro, 5-Mar-2020.) (Contributed by AV, 7-Mar-2020)

Ref Expression
Assertion df-estrc ExtStrCat=uVBasendxuHomndxxu,yuBaseyBasexcompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cestrc classExtStrCat
1 vu setvaru
2 cvv classV
3 cbs classBase
4 cnx classndx
5 4 3 cfv classBasendx
6 1 cv setvaru
7 5 6 cop classBasendxu
8 chom classHom
9 4 8 cfv classHomndx
10 vx setvarx
11 vy setvary
12 11 cv setvary
13 12 3 cfv classBasey
14 cmap class𝑚
15 10 cv setvarx
16 15 3 cfv classBasex
17 13 16 14 co classBaseyBasex
18 10 11 6 6 17 cmpo classxu,yuBaseyBasex
19 9 18 cop classHomndxxu,yuBaseyBasex
20 cco classcomp
21 4 20 cfv classcompndx
22 vv setvarv
23 6 6 cxp classu×u
24 vz setvarz
25 vg setvarg
26 24 cv setvarz
27 26 3 cfv classBasez
28 c2nd class2nd
29 22 cv setvarv
30 29 28 cfv class2ndv
31 30 3 cfv classBase2ndv
32 27 31 14 co classBasezBase2ndv
33 vf setvarf
34 c1st class1st
35 29 34 cfv class1stv
36 35 3 cfv classBase1stv
37 31 36 14 co classBase2ndvBase1stv
38 25 cv setvarg
39 33 cv setvarf
40 38 39 ccom classgf
41 25 33 32 37 40 cmpo classgBasezBase2ndv,fBase2ndvBase1stvgf
42 22 24 23 6 41 cmpo classvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf
43 21 42 cop classcompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf
44 7 19 43 ctp classBasendxuHomndxxu,yuBaseyBasexcompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf
45 1 2 44 cmpt classuVBasendxuHomndxxu,yuBaseyBasexcompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf
46 0 45 wceq wffExtStrCat=uVBasendxuHomndxxu,yuBaseyBasexcompndxvu×u,zugBasezBase2ndv,fBase2ndvBase1stvgf