Metamath Proof Explorer


Theorem estrcval

Description: Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcval.c C = ExtStrCat U
estrcval.u φ U V
estrcval.h φ H = x U , y U Base y Base x
estrcval.o φ · ˙ = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
Assertion estrcval φ C = Base ndx U Hom ndx H comp ndx · ˙

Proof

Step Hyp Ref Expression
1 estrcval.c C = ExtStrCat U
2 estrcval.u φ U V
3 estrcval.h φ H = x U , y U Base y Base x
4 estrcval.o φ · ˙ = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
5 df-estrc ExtStrCat = u V Base ndx u Hom ndx x u , y u Base y Base x comp ndx v u × u , z u g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
6 simpr φ u = U u = U
7 6 opeq2d φ u = U Base ndx u = Base ndx U
8 eqidd φ u = U Base y Base x = Base y Base x
9 6 6 8 mpoeq123dv φ u = U x u , y u Base y Base x = x U , y U Base y Base x
10 3 adantr φ u = U H = x U , y U Base y Base x
11 9 10 eqtr4d φ u = U x u , y u Base y Base x = H
12 11 opeq2d φ u = U Hom ndx x u , y u Base y Base x = Hom ndx H
13 6 sqxpeqd φ u = U u × u = U × U
14 eqidd φ u = U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
15 13 6 14 mpoeq123dv φ u = U v u × u , z u g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
16 4 adantr φ u = U · ˙ = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
17 15 16 eqtr4d φ u = U v u × u , z u g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = · ˙
18 17 opeq2d φ u = U comp ndx v u × u , z u g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = comp ndx · ˙
19 7 12 18 tpeq123d φ u = U Base ndx u Hom ndx x u , y u Base y Base x comp ndx v u × u , z u g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = Base ndx U Hom ndx H comp ndx · ˙
20 2 elexd φ U V
21 tpex Base ndx U Hom ndx H comp ndx · ˙ V
22 21 a1i φ Base ndx U Hom ndx H comp ndx · ˙ V
23 5 19 20 22 fvmptd2 φ ExtStrCat U = Base ndx U Hom ndx H comp ndx · ˙
24 1 23 eqtrid φ C = Base ndx U Hom ndx H comp ndx · ˙