Step |
Hyp |
Ref |
Expression |
1 |
|
estrcval.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
estrcval.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
estrcval.h |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
4 |
|
estrcval.o |
⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
5 |
|
df-estrc |
⊢ ExtStrCat = ( 𝑢 ∈ V ↦ { 〈 ( Base ‘ ndx ) , 𝑢 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) |
7 |
6
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 〈 ( Base ‘ ndx ) , 𝑢 〉 = 〈 ( Base ‘ ndx ) , 𝑈 〉 ) |
8 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) |
9 |
6 6 8
|
mpoeq123dv |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
11 |
9 10
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = 𝐻 ) |
12 |
11
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 = 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) |
13 |
6
|
sqxpeqd |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 × 𝑢 ) = ( 𝑈 × 𝑈 ) ) |
14 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
15 |
13 6 14
|
mpoeq123dv |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
17 |
15 16
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = · ) |
18 |
17
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 = 〈 ( comp ‘ ndx ) , · 〉 ) |
19 |
7 12 18
|
tpeq123d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → { 〈 ( Base ‘ ndx ) , 𝑢 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
20 |
2
|
elexd |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
21 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V ) |
23 |
5 19 20 22
|
fvmptd2 |
⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
24 |
1 23
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |