Step |
Hyp |
Ref |
Expression |
1 |
|
estrcbas.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
estrcbas.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
catstr |
⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } Struct 〈 1 , ; 1 5 〉 |
4 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
5 |
|
snsstp1 |
⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } |
6 |
3 4 5
|
strfv |
⊢ ( 𝑈 ∈ 𝑉 → 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
10 |
1 2 8 9
|
estrcval |
⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
12 |
7 11
|
eqtr4d |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |