Metamath Proof Explorer


Theorem estrcbas

Description: Set of objects of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C = ExtStrCat U
estrcbas.u φ U V
Assertion estrcbas φ U = Base C

Proof

Step Hyp Ref Expression
1 estrcbas.c C = ExtStrCat U
2 estrcbas.u φ U V
3 catstr Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f Struct 1 15
4 baseid Base = Slot Base ndx
5 snsstp1 Base ndx U Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
6 3 4 5 strfv U V U = Base Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
7 2 6 syl φ U = Base Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
8 eqidd φ x U , y U Base y Base x = x U , y U Base y Base x
9 eqidd φ v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
10 1 2 8 9 estrcval φ C = Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
11 10 fveq2d φ Base C = Base Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
12 7 11 eqtr4d φ U = Base C