Metamath Proof Explorer


Theorem estrchomfval

Description: Set of morphisms ("arrows") of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C = ExtStrCat U
estrcbas.u φ U V
estrchomfval.h H = Hom C
Assertion estrchomfval φ H = x U , y U Base y Base x

Proof

Step Hyp Ref Expression
1 estrcbas.c C = ExtStrCat U
2 estrcbas.u φ U V
3 estrchomfval.h H = Hom C
4 eqidd φ x U , y U Base y Base x = x U , y U Base y Base x
5 eqidd φ v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
6 1 2 4 5 estrcval φ C = Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
7 catstr Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f Struct 1 15
8 homid Hom = Slot Hom ndx
9 snsstp2 Hom ndx x U , y U Base y Base x Base ndx U Hom ndx x U , y U Base y Base x comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
10 mpoexga U V U V x U , y U Base y Base x V
11 2 2 10 syl2anc φ x U , y U Base y Base x V
12 6 7 8 9 11 3 strfv3 φ H = x U , y U Base y Base x