Metamath Proof Explorer


Theorem estrchomfval

Description: Set of morphisms ("arrows") of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
estrcbas.u ( 𝜑𝑈𝑉 )
estrchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
Assertion estrchomfval ( 𝜑𝐻 = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 estrcbas.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
2 estrcbas.u ( 𝜑𝑈𝑉 )
3 estrchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
4 eqidd ( 𝜑 → ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) )
5 eqidd ( 𝜑 → ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd𝑣 ) ) ↑m ( Base ‘ ( 1st𝑣 ) ) ) ↦ ( 𝑔𝑓 ) ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd𝑣 ) ) ↑m ( Base ‘ ( 1st𝑣 ) ) ) ↦ ( 𝑔𝑓 ) ) ) )
6 1 2 4 5 estrcval ( 𝜑𝐶 = { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd𝑣 ) ) ↑m ( Base ‘ ( 1st𝑣 ) ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } )
7 catstr { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd𝑣 ) ) ↑m ( Base ‘ ( 1st𝑣 ) ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ } Struct ⟨ 1 , 1 5 ⟩
8 homid Hom = Slot ( Hom ‘ ndx )
9 snsstp2 { ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd𝑣 ) ) ↑m ( Base ‘ ( 1st𝑣 ) ) ) ↦ ( 𝑔𝑓 ) ) ) ⟩ }
10 mpoexga ( ( 𝑈𝑉𝑈𝑉 ) → ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∈ V )
11 2 2 10 syl2anc ( 𝜑 → ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∈ V )
12 6 7 8 9 11 3 strfv3 ( 𝜑𝐻 = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) )