Metamath Proof Explorer


Theorem estrchom

Description: The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
estrcbas.u ( 𝜑𝑈𝑉 )
estrchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
estrchom.x ( 𝜑𝑋𝑈 )
estrchom.y ( 𝜑𝑌𝑈 )
estrchom.a 𝐴 = ( Base ‘ 𝑋 )
estrchom.b 𝐵 = ( Base ‘ 𝑌 )
Assertion estrchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝐵m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 estrcbas.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
2 estrcbas.u ( 𝜑𝑈𝑉 )
3 estrchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
4 estrchom.x ( 𝜑𝑋𝑈 )
5 estrchom.y ( 𝜑𝑌𝑈 )
6 estrchom.a 𝐴 = ( Base ‘ 𝑋 )
7 estrchom.b 𝐵 = ( Base ‘ 𝑌 )
8 1 2 3 estrchomfval ( 𝜑𝐻 = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) )
9 fveq2 ( 𝑦 = 𝑌 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑌 ) )
10 fveq2 ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) )
11 9 10 oveqan12rd ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) )
12 7 6 oveq12i ( 𝐵m 𝐴 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) )
13 11 12 eqtr4di ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝐵m 𝐴 ) )
14 13 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝐵m 𝐴 ) )
15 ovexd ( 𝜑 → ( 𝐵m 𝐴 ) ∈ V )
16 8 14 4 5 15 ovmpod ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝐵m 𝐴 ) )