Step |
Hyp |
Ref |
Expression |
1 |
|
estrcbas.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
estrcbas.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
estrchomfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
estrchom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
5 |
|
estrchom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
6 |
|
estrchom.a |
⊢ 𝐴 = ( Base ‘ 𝑋 ) |
7 |
|
estrchom.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
8 |
1 2 3
|
estrchomfval |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑌 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
11 |
9 10
|
oveqan12rd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
12 |
7 6
|
oveq12i |
⊢ ( 𝐵 ↑m 𝐴 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) |
13 |
11 12
|
eqtr4di |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝐵 ↑m 𝐴 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( 𝐵 ↑m 𝐴 ) ) |
15 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐵 ↑m 𝐴 ) ∈ V ) |
16 |
8 14 4 5 15
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝐵 ↑m 𝐴 ) ) |