Step |
Hyp |
Ref |
Expression |
1 |
|
estrcbas.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
estrcbas.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
estrchomfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
estrchom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
5 |
|
estrchom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
6 |
|
estrchom.a |
⊢ 𝐴 = ( Base ‘ 𝑋 ) |
7 |
|
estrchom.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
8 |
1 2 3 4 5 6 7
|
estrchom |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝐵 ↑m 𝐴 ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
10 |
7
|
fvexi |
⊢ 𝐵 ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
12 |
6
|
fvexi |
⊢ 𝐴 ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
14 |
11 13
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
15 |
9 14
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |