Description: A morphism between extensible structures is a function between their base sets. (Contributed by AV, 7-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
estrcbas.u | |- ( ph -> U e. V ) |
||
estrchomfval.h | |- H = ( Hom ` C ) |
||
estrchom.x | |- ( ph -> X e. U ) |
||
estrchom.y | |- ( ph -> Y e. U ) |
||
estrchom.a | |- A = ( Base ` X ) |
||
estrchom.b | |- B = ( Base ` Y ) |
||
Assertion | elestrchom | |- ( ph -> ( F e. ( X H Y ) <-> F : A --> B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
2 | estrcbas.u | |- ( ph -> U e. V ) |
|
3 | estrchomfval.h | |- H = ( Hom ` C ) |
|
4 | estrchom.x | |- ( ph -> X e. U ) |
|
5 | estrchom.y | |- ( ph -> Y e. U ) |
|
6 | estrchom.a | |- A = ( Base ` X ) |
|
7 | estrchom.b | |- B = ( Base ` Y ) |
|
8 | 1 2 3 4 5 6 7 | estrchom | |- ( ph -> ( X H Y ) = ( B ^m A ) ) |
9 | 8 | eleq2d | |- ( ph -> ( F e. ( X H Y ) <-> F e. ( B ^m A ) ) ) |
10 | 7 | fvexi | |- B e. _V |
11 | 10 | a1i | |- ( ph -> B e. _V ) |
12 | 6 | fvexi | |- A e. _V |
13 | 12 | a1i | |- ( ph -> A e. _V ) |
14 | 11 13 | elmapd | |- ( ph -> ( F e. ( B ^m A ) <-> F : A --> B ) ) |
15 | 9 14 | bitrd | |- ( ph -> ( F e. ( X H Y ) <-> F : A --> B ) ) |