Metamath Proof Explorer


Theorem elestrchom

Description: A morphism between extensible structures is a function between their base sets. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c
|- C = ( ExtStrCat ` U )
estrcbas.u
|- ( ph -> U e. V )
estrchomfval.h
|- H = ( Hom ` C )
estrchom.x
|- ( ph -> X e. U )
estrchom.y
|- ( ph -> Y e. U )
estrchom.a
|- A = ( Base ` X )
estrchom.b
|- B = ( Base ` Y )
Assertion elestrchom
|- ( ph -> ( F e. ( X H Y ) <-> F : A --> B ) )

Proof

Step Hyp Ref Expression
1 estrcbas.c
 |-  C = ( ExtStrCat ` U )
2 estrcbas.u
 |-  ( ph -> U e. V )
3 estrchomfval.h
 |-  H = ( Hom ` C )
4 estrchom.x
 |-  ( ph -> X e. U )
5 estrchom.y
 |-  ( ph -> Y e. U )
6 estrchom.a
 |-  A = ( Base ` X )
7 estrchom.b
 |-  B = ( Base ` Y )
8 1 2 3 4 5 6 7 estrchom
 |-  ( ph -> ( X H Y ) = ( B ^m A ) )
9 8 eleq2d
 |-  ( ph -> ( F e. ( X H Y ) <-> F e. ( B ^m A ) ) )
10 7 fvexi
 |-  B e. _V
11 10 a1i
 |-  ( ph -> B e. _V )
12 6 fvexi
 |-  A e. _V
13 12 a1i
 |-  ( ph -> A e. _V )
14 11 13 elmapd
 |-  ( ph -> ( F e. ( B ^m A ) <-> F : A --> B ) )
15 9 14 bitrd
 |-  ( ph -> ( F e. ( X H Y ) <-> F : A --> B ) )