Step |
Hyp |
Ref |
Expression |
1 |
|
estrcbas.c |
|- C = ( ExtStrCat ` U ) |
2 |
|
estrcbas.u |
|- ( ph -> U e. V ) |
3 |
|
estrchomfval.h |
|- H = ( Hom ` C ) |
4 |
|
estrchom.x |
|- ( ph -> X e. U ) |
5 |
|
estrchom.y |
|- ( ph -> Y e. U ) |
6 |
|
estrchom.a |
|- A = ( Base ` X ) |
7 |
|
estrchom.b |
|- B = ( Base ` Y ) |
8 |
1 2 3
|
estrchomfval |
|- ( ph -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
9 |
|
fveq2 |
|- ( y = Y -> ( Base ` y ) = ( Base ` Y ) ) |
10 |
|
fveq2 |
|- ( x = X -> ( Base ` x ) = ( Base ` X ) ) |
11 |
9 10
|
oveqan12rd |
|- ( ( x = X /\ y = Y ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` Y ) ^m ( Base ` X ) ) ) |
12 |
7 6
|
oveq12i |
|- ( B ^m A ) = ( ( Base ` Y ) ^m ( Base ` X ) ) |
13 |
11 12
|
eqtr4di |
|- ( ( x = X /\ y = Y ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( B ^m A ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( B ^m A ) ) |
15 |
|
ovexd |
|- ( ph -> ( B ^m A ) e. _V ) |
16 |
8 14 4 5 15
|
ovmpod |
|- ( ph -> ( X H Y ) = ( B ^m A ) ) |