Metamath Proof Explorer


Theorem estrchom

Description: The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C = ExtStrCat U
estrcbas.u φ U V
estrchomfval.h H = Hom C
estrchom.x φ X U
estrchom.y φ Y U
estrchom.a A = Base X
estrchom.b B = Base Y
Assertion estrchom φ X H Y = B A

Proof

Step Hyp Ref Expression
1 estrcbas.c C = ExtStrCat U
2 estrcbas.u φ U V
3 estrchomfval.h H = Hom C
4 estrchom.x φ X U
5 estrchom.y φ Y U
6 estrchom.a A = Base X
7 estrchom.b B = Base Y
8 1 2 3 estrchomfval φ H = x U , y U Base y Base x
9 fveq2 y = Y Base y = Base Y
10 fveq2 x = X Base x = Base X
11 9 10 oveqan12rd x = X y = Y Base y Base x = Base Y Base X
12 7 6 oveq12i B A = Base Y Base X
13 11 12 eqtr4di x = X y = Y Base y Base x = B A
14 13 adantl φ x = X y = Y Base y Base x = B A
15 ovexd φ B A V
16 8 14 4 5 15 ovmpod φ X H Y = B A