Metamath Proof Explorer


Theorem ringchomfval

Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcbas.c C=RingCatU
ringcbas.b B=BaseC
ringcbas.u φUV
ringchomfval.h H=HomC
Assertion ringchomfval φH=RingHomB×B

Proof

Step Hyp Ref Expression
1 ringcbas.c C=RingCatU
2 ringcbas.b B=BaseC
3 ringcbas.u φUV
4 ringchomfval.h H=HomC
5 1 2 3 ringcbas φB=URing
6 eqidd φRingHomB×B=RingHomB×B
7 1 3 5 6 ringcval φC=ExtStrCatUcatRingHomB×B
8 7 fveq2d φHomC=HomExtStrCatUcatRingHomB×B
9 4 8 eqtrid φH=HomExtStrCatUcatRingHomB×B
10 eqid ExtStrCatUcatRingHomB×B=ExtStrCatUcatRingHomB×B
11 eqid BaseExtStrCatU=BaseExtStrCatU
12 fvexd φExtStrCatUV
13 5 6 rhmresfn φRingHomB×BFnB×B
14 inss1 URingU
15 14 a1i φURingU
16 eqid ExtStrCatU=ExtStrCatU
17 16 3 estrcbas φU=BaseExtStrCatU
18 17 eqcomd φBaseExtStrCatU=U
19 15 5 18 3sstr4d φBBaseExtStrCatU
20 10 11 12 13 19 reschom φRingHomB×B=HomExtStrCatUcatRingHomB×B
21 9 20 eqtr4d φH=RingHomB×B