Metamath Proof Explorer


Theorem ringchomfval

Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcbas.c C = RingCat U
ringcbas.b B = Base C
ringcbas.u φ U V
ringchomfval.h H = Hom C
Assertion ringchomfval φ H = RingHom B × B

Proof

Step Hyp Ref Expression
1 ringcbas.c C = RingCat U
2 ringcbas.b B = Base C
3 ringcbas.u φ U V
4 ringchomfval.h H = Hom C
5 1 2 3 ringcbas φ B = U Ring
6 eqidd φ RingHom B × B = RingHom B × B
7 1 3 5 6 ringcval φ C = ExtStrCat U cat RingHom B × B
8 7 fveq2d φ Hom C = Hom ExtStrCat U cat RingHom B × B
9 4 8 syl5eq φ H = Hom ExtStrCat U cat RingHom B × B
10 eqid ExtStrCat U cat RingHom B × B = ExtStrCat U cat RingHom B × B
11 eqid Base ExtStrCat U = Base ExtStrCat U
12 fvexd φ ExtStrCat U V
13 5 6 rhmresfn φ RingHom B × B Fn B × B
14 inss1 U Ring U
15 14 a1i φ U Ring U
16 eqid ExtStrCat U = ExtStrCat U
17 16 3 estrcbas φ U = Base ExtStrCat U
18 17 eqcomd φ Base ExtStrCat U = U
19 15 5 18 3sstr4d φ B Base ExtStrCat U
20 10 11 12 13 19 reschom φ RingHom B × B = Hom ExtStrCat U cat RingHom B × B
21 9 20 eqtr4d φ H = RingHom B × B