Metamath Proof Explorer


Theorem ringchom

Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcbas.c C=RingCatU
ringcbas.b B=BaseC
ringcbas.u φUV
ringchomfval.h H=HomC
ringchom.x φXB
ringchom.y φYB
Assertion ringchom φXHY=XRingHomY

Proof

Step Hyp Ref Expression
1 ringcbas.c C=RingCatU
2 ringcbas.b B=BaseC
3 ringcbas.u φUV
4 ringchomfval.h H=HomC
5 ringchom.x φXB
6 ringchom.y φYB
7 1 2 3 4 ringchomfval φH=RingHomB×B
8 7 oveqd φXHY=XRingHomB×BY
9 5 6 ovresd φXRingHomB×BY=XRingHomY
10 8 9 eqtrd φXHY=XRingHomY