Metamath Proof Explorer


Theorem elringchom

Description: A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcbas.c C = RingCat U
ringcbas.b B = Base C
ringcbas.u φ U V
ringchomfval.h H = Hom C
ringchom.x φ X B
ringchom.y φ Y B
Assertion elringchom φ F X H Y F : Base X Base Y

Proof

Step Hyp Ref Expression
1 ringcbas.c C = RingCat U
2 ringcbas.b B = Base C
3 ringcbas.u φ U V
4 ringchomfval.h H = Hom C
5 ringchom.x φ X B
6 ringchom.y φ Y B
7 1 2 3 4 5 6 ringchom φ X H Y = X RingHom Y
8 7 eleq2d φ F X H Y F X RingHom Y
9 eqid Base X = Base X
10 eqid Base Y = Base Y
11 9 10 rhmf F X RingHom Y F : Base X Base Y
12 8 11 syl6bi φ F X H Y F : Base X Base Y