Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
The category of (unital) rings
elringchom
Next ⟩
ringchomfeqhom
Metamath Proof Explorer
Ascii
Unicode
Theorem
elringchom
Description:
A morphism of unital rings is a function.
(Contributed by
AV
, 14-Feb-2020)
Ref
Expression
Hypotheses
ringcbas.c
⊢
C
=
RingCat
⁡
U
ringcbas.b
⊢
B
=
Base
C
ringcbas.u
⊢
φ
→
U
∈
V
ringchomfval.h
⊢
H
=
Hom
⁡
C
ringchom.x
⊢
φ
→
X
∈
B
ringchom.y
⊢
φ
→
Y
∈
B
Assertion
elringchom
⊢
φ
→
F
∈
X
H
Y
→
F
:
Base
X
⟶
Base
Y
Proof
Step
Hyp
Ref
Expression
1
ringcbas.c
⊢
C
=
RingCat
⁡
U
2
ringcbas.b
⊢
B
=
Base
C
3
ringcbas.u
⊢
φ
→
U
∈
V
4
ringchomfval.h
⊢
H
=
Hom
⁡
C
5
ringchom.x
⊢
φ
→
X
∈
B
6
ringchom.y
⊢
φ
→
Y
∈
B
7
1
2
3
4
5
6
ringchom
⊢
φ
→
X
H
Y
=
X
RingHom
Y
8
7
eleq2d
⊢
φ
→
F
∈
X
H
Y
↔
F
∈
X
RingHom
Y
9
eqid
⊢
Base
X
=
Base
X
10
eqid
⊢
Base
Y
=
Base
Y
11
9
10
rhmf
⊢
F
∈
X
RingHom
Y
→
F
:
Base
X
⟶
Base
Y
12
8
11
syl6bi
⊢
φ
→
F
∈
X
H
Y
→
F
:
Base
X
⟶
Base
Y