Metamath Proof Explorer


Theorem elringchom

Description: A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcbas.c C=RingCatU
ringcbas.b B=BaseC
ringcbas.u φUV
ringchomfval.h H=HomC
ringchom.x φXB
ringchom.y φYB
Assertion elringchom φFXHYF:BaseXBaseY

Proof

Step Hyp Ref Expression
1 ringcbas.c C=RingCatU
2 ringcbas.b B=BaseC
3 ringcbas.u φUV
4 ringchomfval.h H=HomC
5 ringchom.x φXB
6 ringchom.y φYB
7 1 2 3 4 5 6 ringchom φXHY=XRingHomY
8 7 eleq2d φFXHYFXRingHomY
9 eqid BaseX=BaseX
10 eqid BaseY=BaseY
11 9 10 rhmf FXRingHomYF:BaseXBaseY
12 8 11 syl6bi φFXHYF:BaseXBaseY