Metamath Proof Explorer


Theorem elringchom

Description: A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcbas.c 𝐶 = ( RingCat ‘ 𝑈 )
ringcbas.b 𝐵 = ( Base ‘ 𝐶 )
ringcbas.u ( 𝜑𝑈𝑉 )
ringchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
ringchom.x ( 𝜑𝑋𝐵 )
ringchom.y ( 𝜑𝑌𝐵 )
Assertion elringchom ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 ringcbas.c 𝐶 = ( RingCat ‘ 𝑈 )
2 ringcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 ringcbas.u ( 𝜑𝑈𝑉 )
4 ringchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
5 ringchom.x ( 𝜑𝑋𝐵 )
6 ringchom.y ( 𝜑𝑌𝐵 )
7 1 2 3 4 5 6 ringchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) )
8 7 eleq2d ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) )
9 eqid ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 )
10 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
11 9 10 rhmf ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) )
12 8 11 syl6bi ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) )