Metamath Proof Explorer


Theorem ringchom

Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcbas.c 𝐶 = ( RingCat ‘ 𝑈 )
ringcbas.b 𝐵 = ( Base ‘ 𝐶 )
ringcbas.u ( 𝜑𝑈𝑉 )
ringchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
ringchom.x ( 𝜑𝑋𝐵 )
ringchom.y ( 𝜑𝑌𝐵 )
Assertion ringchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ringcbas.c 𝐶 = ( RingCat ‘ 𝑈 )
2 ringcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 ringcbas.u ( 𝜑𝑈𝑉 )
4 ringchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
5 ringchom.x ( 𝜑𝑋𝐵 )
6 ringchom.y ( 𝜑𝑌𝐵 )
7 1 2 3 4 ringchomfval ( 𝜑𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
8 7 oveqd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) )
9 5 6 ovresd ( 𝜑 → ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) )
10 8 9 eqtrd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) )