Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
ringchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
ringchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
ringchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
Assertion | ringchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
2 | ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
4 | ringchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
5 | ringchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
6 | ringchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
7 | 1 2 3 4 | ringchomfval | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
8 | 7 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) ) |
9 | 5 6 | ovresd | ⊢ ( 𝜑 → ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
10 | 8 9 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |