Step |
Hyp |
Ref |
Expression |
1 |
|
ringcbas.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
2 |
|
ringcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
ringcbas.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
4 |
|
ringchomfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
1 2 3
|
ringcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
7 |
1 3 5 6
|
ringcval |
⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
9 |
4 8
|
syl5eq |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
10 |
|
eqid |
⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) |
12 |
|
fvexd |
⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) ∈ V ) |
13 |
5 6
|
rhmresfn |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
14 |
|
inss1 |
⊢ ( 𝑈 ∩ Ring ) ⊆ 𝑈 |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ⊆ 𝑈 ) |
16 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
17 |
16 3
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = 𝑈 ) |
19 |
15 5 18
|
3sstr4d |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
20 |
10 11 12 13 19
|
reschom |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
21 |
9 20
|
eqtr4d |
⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |