Metamath Proof Explorer


Theorem rhmresfn

Description: The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020)

Ref Expression
Hypotheses rhmresfn.b ( 𝜑𝐵 = ( 𝑈 ∩ Ring ) )
rhmresfn.h ( 𝜑𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
Assertion rhmresfn ( 𝜑𝐻 Fn ( 𝐵 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rhmresfn.b ( 𝜑𝐵 = ( 𝑈 ∩ Ring ) )
2 rhmresfn.h ( 𝜑𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
3 rhmfn RingHom Fn ( Ring × Ring )
4 inss2 ( 𝑈 ∩ Ring ) ⊆ Ring
5 1 4 eqsstrdi ( 𝜑𝐵 ⊆ Ring )
6 xpss12 ( ( 𝐵 ⊆ Ring ∧ 𝐵 ⊆ Ring ) → ( 𝐵 × 𝐵 ) ⊆ ( Ring × Ring ) )
7 5 5 6 syl2anc ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ ( Ring × Ring ) )
8 fnssres ( ( RingHom Fn ( Ring × Ring ) ∧ ( 𝐵 × 𝐵 ) ⊆ ( Ring × Ring ) ) → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) )
9 3 7 8 sylancr ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) )
10 2 fneq1d ( 𝜑 → ( 𝐻 Fn ( 𝐵 × 𝐵 ) ↔ ( RingHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) )
11 9 10 mpbird ( 𝜑𝐻 Fn ( 𝐵 × 𝐵 ) )