Step |
Hyp |
Ref |
Expression |
1 |
|
rhmresel.h |
⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
3 |
2
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) ) |
4 |
|
ovres |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
6 |
3 5
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) ) |
8 |
7
|
biimp3a |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) |