Step |
Hyp |
Ref |
Expression |
1 |
|
rhmresfn.b |
|- ( ph -> B = ( U i^i Ring ) ) |
2 |
|
rhmresfn.h |
|- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
3 |
|
rhmfn |
|- RingHom Fn ( Ring X. Ring ) |
4 |
|
inss2 |
|- ( U i^i Ring ) C_ Ring |
5 |
1 4
|
eqsstrdi |
|- ( ph -> B C_ Ring ) |
6 |
|
xpss12 |
|- ( ( B C_ Ring /\ B C_ Ring ) -> ( B X. B ) C_ ( Ring X. Ring ) ) |
7 |
5 5 6
|
syl2anc |
|- ( ph -> ( B X. B ) C_ ( Ring X. Ring ) ) |
8 |
|
fnssres |
|- ( ( RingHom Fn ( Ring X. Ring ) /\ ( B X. B ) C_ ( Ring X. Ring ) ) -> ( RingHom |` ( B X. B ) ) Fn ( B X. B ) ) |
9 |
3 7 8
|
sylancr |
|- ( ph -> ( RingHom |` ( B X. B ) ) Fn ( B X. B ) ) |
10 |
2
|
fneq1d |
|- ( ph -> ( H Fn ( B X. B ) <-> ( RingHom |` ( B X. B ) ) Fn ( B X. B ) ) ) |
11 |
9 10
|
mpbird |
|- ( ph -> H Fn ( B X. B ) ) |