Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbas.c | |- C = ( RingCat ` U ) |
|
| ringcbas.b | |- B = ( Base ` C ) |
||
| ringcbas.u | |- ( ph -> U e. V ) |
||
| ringchomfval.h | |- H = ( Hom ` C ) |
||
| ringchom.x | |- ( ph -> X e. B ) |
||
| ringchom.y | |- ( ph -> Y e. B ) |
||
| Assertion | ringchom | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcbas.c | |- C = ( RingCat ` U ) |
|
| 2 | ringcbas.b | |- B = ( Base ` C ) |
|
| 3 | ringcbas.u | |- ( ph -> U e. V ) |
|
| 4 | ringchomfval.h | |- H = ( Hom ` C ) |
|
| 5 | ringchom.x | |- ( ph -> X e. B ) |
|
| 6 | ringchom.y | |- ( ph -> Y e. B ) |
|
| 7 | 1 2 3 4 | ringchomfval | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
| 8 | 7 | oveqd | |- ( ph -> ( X H Y ) = ( X ( RingHom |` ( B X. B ) ) Y ) ) |
| 9 | 5 6 | ovresd | |- ( ph -> ( X ( RingHom |` ( B X. B ) ) Y ) = ( X RingHom Y ) ) |
| 10 | 8 9 | eqtrd | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |