Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringcbas.c | |- C = ( RingCat ` U ) |
|
ringcbas.b | |- B = ( Base ` C ) |
||
ringcbas.u | |- ( ph -> U e. V ) |
||
ringchomfval.h | |- H = ( Hom ` C ) |
||
ringchom.x | |- ( ph -> X e. B ) |
||
ringchom.y | |- ( ph -> Y e. B ) |
||
Assertion | ringchom | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbas.c | |- C = ( RingCat ` U ) |
|
2 | ringcbas.b | |- B = ( Base ` C ) |
|
3 | ringcbas.u | |- ( ph -> U e. V ) |
|
4 | ringchomfval.h | |- H = ( Hom ` C ) |
|
5 | ringchom.x | |- ( ph -> X e. B ) |
|
6 | ringchom.y | |- ( ph -> Y e. B ) |
|
7 | 1 2 3 4 | ringchomfval | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
8 | 7 | oveqd | |- ( ph -> ( X H Y ) = ( X ( RingHom |` ( B X. B ) ) Y ) ) |
9 | 5 6 | ovresd | |- ( ph -> ( X ( RingHom |` ( B X. B ) ) Y ) = ( X RingHom Y ) ) |
10 | 8 9 | eqtrd | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |