Metamath Proof Explorer


Theorem ringchom

Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcbas.c
|- C = ( RingCat ` U )
ringcbas.b
|- B = ( Base ` C )
ringcbas.u
|- ( ph -> U e. V )
ringchomfval.h
|- H = ( Hom ` C )
ringchom.x
|- ( ph -> X e. B )
ringchom.y
|- ( ph -> Y e. B )
Assertion ringchom
|- ( ph -> ( X H Y ) = ( X RingHom Y ) )

Proof

Step Hyp Ref Expression
1 ringcbas.c
 |-  C = ( RingCat ` U )
2 ringcbas.b
 |-  B = ( Base ` C )
3 ringcbas.u
 |-  ( ph -> U e. V )
4 ringchomfval.h
 |-  H = ( Hom ` C )
5 ringchom.x
 |-  ( ph -> X e. B )
6 ringchom.y
 |-  ( ph -> Y e. B )
7 1 2 3 4 ringchomfval
 |-  ( ph -> H = ( RingHom |` ( B X. B ) ) )
8 7 oveqd
 |-  ( ph -> ( X H Y ) = ( X ( RingHom |` ( B X. B ) ) Y ) )
9 5 6 ovresd
 |-  ( ph -> ( X ( RingHom |` ( B X. B ) ) Y ) = ( X RingHom Y ) )
10 8 9 eqtrd
 |-  ( ph -> ( X H Y ) = ( X RingHom Y ) )