Metamath Proof Explorer


Theorem ringchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses ringcbas.c 𝐶 = ( RingCat ‘ 𝑈 )
ringcbas.b 𝐵 = ( Base ‘ 𝐶 )
ringcbas.u ( 𝜑𝑈𝑉 )
Assertion ringchomfeqhom ( 𝜑 → ( Homf𝐶 ) = ( Hom ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ringcbas.c 𝐶 = ( RingCat ‘ 𝑈 )
2 ringcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 ringcbas.u ( 𝜑𝑈𝑉 )
4 1 2 3 ringcbas ( 𝜑𝐵 = ( 𝑈 ∩ Ring ) )
5 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
6 1 2 3 5 ringchomfval ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
7 4 6 rhmresfn ( 𝜑 → ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) )
8 eqid ( Homf𝐶 ) = ( Homf𝐶 )
9 8 2 5 fnhomeqhomf ( ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) → ( Homf𝐶 ) = ( Hom ‘ 𝐶 ) )
10 7 9 syl ( 𝜑 → ( Homf𝐶 ) = ( Hom ‘ 𝐶 ) )