Step |
Hyp |
Ref |
Expression |
1 |
|
ringcco.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
2 |
|
ringcco.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
ringcco.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
5 |
1 4 2
|
ringcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
7 |
1 4 2 6
|
ringchomfval |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
8 |
1 2 5 7
|
ringcval |
⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) ) ) |
10 |
3
|
a1i |
⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) |
11 |
|
eqid |
⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) |
13 |
|
fvexd |
⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) ∈ V ) |
14 |
5 7
|
rhmresfn |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
15 |
|
inss1 |
⊢ ( 𝑈 ∩ Ring ) ⊆ 𝑈 |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ⊆ 𝑈 ) |
17 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
18 |
17 2
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
19 |
18
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = 𝑈 ) |
20 |
16 5 19
|
3sstr4d |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
21 |
|
eqid |
⊢ ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) |
22 |
11 12 13 14 20 21
|
rescco |
⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) ) ) |
23 |
9 10 22
|
3eqtr4d |
⊢ ( 𝜑 → · = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |