Metamath Proof Explorer


Theorem ringchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses ringcbas.c
|- C = ( RingCat ` U )
ringcbas.b
|- B = ( Base ` C )
ringcbas.u
|- ( ph -> U e. V )
Assertion ringchomfeqhom
|- ( ph -> ( Homf ` C ) = ( Hom ` C ) )

Proof

Step Hyp Ref Expression
1 ringcbas.c
 |-  C = ( RingCat ` U )
2 ringcbas.b
 |-  B = ( Base ` C )
3 ringcbas.u
 |-  ( ph -> U e. V )
4 1 2 3 ringcbas
 |-  ( ph -> B = ( U i^i Ring ) )
5 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
6 1 2 3 5 ringchomfval
 |-  ( ph -> ( Hom ` C ) = ( RingHom |` ( B X. B ) ) )
7 4 6 rhmresfn
 |-  ( ph -> ( Hom ` C ) Fn ( B X. B ) )
8 eqid
 |-  ( Homf ` C ) = ( Homf ` C )
9 8 2 5 fnhomeqhomf
 |-  ( ( Hom ` C ) Fn ( B X. B ) -> ( Homf ` C ) = ( Hom ` C ) )
10 7 9 syl
 |-  ( ph -> ( Homf ` C ) = ( Hom ` C ) )