Step |
Hyp |
Ref |
Expression |
1 |
|
ringcbas.c |
|- C = ( RingCat ` U ) |
2 |
|
ringcbas.b |
|- B = ( Base ` C ) |
3 |
|
ringcbas.u |
|- ( ph -> U e. V ) |
4 |
1 2 3
|
ringcbas |
|- ( ph -> B = ( U i^i Ring ) ) |
5 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
6 |
1 2 3 5
|
ringchomfval |
|- ( ph -> ( Hom ` C ) = ( RingHom |` ( B X. B ) ) ) |
7 |
4 6
|
rhmresfn |
|- ( ph -> ( Hom ` C ) Fn ( B X. B ) ) |
8 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
9 |
8 2 5
|
fnhomeqhomf |
|- ( ( Hom ` C ) Fn ( B X. B ) -> ( Homf ` C ) = ( Hom ` C ) ) |
10 |
7 9
|
syl |
|- ( ph -> ( Homf ` C ) = ( Hom ` C ) ) |