Metamath Proof Explorer


Theorem ringchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses ringcbas.c C = RingCat U
ringcbas.b B = Base C
ringcbas.u φ U V
Assertion ringchomfeqhom φ Hom 𝑓 C = Hom C

Proof

Step Hyp Ref Expression
1 ringcbas.c C = RingCat U
2 ringcbas.b B = Base C
3 ringcbas.u φ U V
4 1 2 3 ringcbas φ B = U Ring
5 eqid Hom C = Hom C
6 1 2 3 5 ringchomfval φ Hom C = RingHom B × B
7 4 6 rhmresfn φ Hom C Fn B × B
8 eqid Hom 𝑓 C = Hom 𝑓 C
9 8 2 5 fnhomeqhomf Hom C Fn B × B Hom 𝑓 C = Hom C
10 7 9 syl φ Hom 𝑓 C = Hom C