Metamath Proof Explorer


Theorem reschom

Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rescbas.d D=CcatH
rescbas.b B=BaseC
rescbas.c φCV
rescbas.h φHFnS×S
rescbas.s φSB
Assertion reschom φH=HomD

Proof

Step Hyp Ref Expression
1 rescbas.d D=CcatH
2 rescbas.b B=BaseC
3 rescbas.c φCV
4 rescbas.h φHFnS×S
5 rescbas.s φSB
6 ovex C𝑠SV
7 2 fvexi BV
8 7 ssex SBSV
9 5 8 syl φSV
10 9 9 xpexd φS×SV
11 fnex HFnS×SS×SVHV
12 4 10 11 syl2anc φHV
13 homid Hom=SlotHomndx
14 13 setsid C𝑠SVHVH=HomC𝑠SsSetHomndxH
15 6 12 14 sylancr φH=HomC𝑠SsSetHomndxH
16 1 3 9 4 rescval2 φD=C𝑠SsSetHomndxH
17 16 fveq2d φHomD=HomC𝑠SsSetHomndxH
18 15 17 eqtr4d φH=HomD