Metamath Proof Explorer


Theorem srhmsubclem2

Description: Lemma 2 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s r S r Ring
srhmsubc.c C = U S
Assertion srhmsubclem2 U V X C X Base RingCat U

Proof

Step Hyp Ref Expression
1 srhmsubc.s r S r Ring
2 srhmsubc.c C = U S
3 1 2 srhmsubclem1 X C X U Ring
4 3 adantl U V X C X U Ring
5 eqid RingCat U = RingCat U
6 eqid Base RingCat U = Base RingCat U
7 id U V U V
8 5 6 7 ringcbas U V Base RingCat U = U Ring
9 8 adantr U V X C Base RingCat U = U Ring
10 4 9 eleqtrrd U V X C X Base RingCat U