Metamath Proof Explorer


Theorem ringcid

Description: The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020) (Revised by AV, 10-Mar-2020)

Ref Expression
Hypotheses ringccat.c C=RingCatU
ringcid.b B=BaseC
ringcid.o 1˙=IdC
ringcid.u φUV
ringcid.x φXB
ringcid.s S=BaseX
Assertion ringcid φ1˙X=IS

Proof

Step Hyp Ref Expression
1 ringccat.c C=RingCatU
2 ringcid.b B=BaseC
3 ringcid.o 1˙=IdC
4 ringcid.u φUV
5 ringcid.x φXB
6 ringcid.s S=BaseX
7 eqidd φURing=URing
8 eqidd φRingHomURing×URing=RingHomURing×URing
9 1 4 7 8 ringcval φC=ExtStrCatUcatRingHomURing×URing
10 9 fveq2d φIdC=IdExtStrCatUcatRingHomURing×URing
11 3 10 eqtrid φ1˙=IdExtStrCatUcatRingHomURing×URing
12 11 fveq1d φ1˙X=IdExtStrCatUcatRingHomURing×URingX
13 eqid ExtStrCatUcatRingHomURing×URing=ExtStrCatUcatRingHomURing×URing
14 eqid ExtStrCatU=ExtStrCatU
15 incom URing=RingU
16 15 a1i φURing=RingU
17 14 4 16 8 rhmsubcsetc φRingHomURing×URingSubcatExtStrCatU
18 7 8 rhmresfn φRingHomURing×URingFnURing×URing
19 eqid IdExtStrCatU=IdExtStrCatU
20 1 2 4 ringcbas φB=URing
21 20 eleq2d φXBXURing
22 5 21 mpbid φXURing
23 13 17 18 19 22 subcid φIdExtStrCatUX=IdExtStrCatUcatRingHomURing×URingX
24 elinel1 XURingXU
25 21 24 syl6bi φXBXU
26 5 25 mpd φXU
27 14 19 4 26 estrcid φIdExtStrCatUX=IBaseX
28 6 eqcomi BaseX=S
29 28 a1i φBaseX=S
30 29 reseq2d φIBaseX=IS
31 27 30 eqtrd φIdExtStrCatUX=IS
32 12 23 31 3eqtr2d φ1˙X=IS