Metamath Proof Explorer


Theorem rhmsscrnghm

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020)

Ref Expression
Hypotheses rhmsscrnghm.u φ U V
rhmsscrnghm.r φ R = Ring U
rhmsscrnghm.s φ S = Rng U
Assertion rhmsscrnghm φ RingHom R × R cat RngHomo S × S

Proof

Step Hyp Ref Expression
1 rhmsscrnghm.u φ U V
2 rhmsscrnghm.r φ R = Ring U
3 rhmsscrnghm.s φ S = Rng U
4 ringrng r Ring r Rng
5 4 a1i φ r Ring r Rng
6 5 ssrdv φ Ring Rng
7 6 ssrind φ Ring U Rng U
8 7 2 3 3sstr4d φ R S
9 ovres x R y R x RingHom R × R y = x RingHom y
10 9 adantl φ x R y R x RingHom R × R y = x RingHom y
11 10 eleq2d φ x R y R h x RingHom R × R y h x RingHom y
12 rhmisrnghm h x RingHom y h x RngHomo y
13 8 sseld φ x R x S
14 8 sseld φ y R y S
15 13 14 anim12d φ x R y R x S y S
16 15 imp φ x R y R x S y S
17 ovres x S y S x RngHomo S × S y = x RngHomo y
18 16 17 syl φ x R y R x RngHomo S × S y = x RngHomo y
19 18 eleq2d φ x R y R h x RngHomo S × S y h x RngHomo y
20 12 19 syl5ibr φ x R y R h x RingHom y h x RngHomo S × S y
21 11 20 sylbid φ x R y R h x RingHom R × R y h x RngHomo S × S y
22 21 ssrdv φ x R y R x RingHom R × R y x RngHomo S × S y
23 22 ralrimivva φ x R y R x RingHom R × R y x RngHomo S × S y
24 inss1 Ring U Ring
25 2 24 eqsstrdi φ R Ring
26 xpss12 R Ring R Ring R × R Ring × Ring
27 25 25 26 syl2anc φ R × R Ring × Ring
28 rhmfn RingHom Fn Ring × Ring
29 fnssresb RingHom Fn Ring × Ring RingHom R × R Fn R × R R × R Ring × Ring
30 28 29 mp1i φ RingHom R × R Fn R × R R × R Ring × Ring
31 27 30 mpbird φ RingHom R × R Fn R × R
32 inss1 Rng U Rng
33 3 32 eqsstrdi φ S Rng
34 xpss12 S Rng S Rng S × S Rng × Rng
35 33 33 34 syl2anc φ S × S Rng × Rng
36 rnghmfn RngHomo Fn Rng × Rng
37 fnssresb RngHomo Fn Rng × Rng RngHomo S × S Fn S × S S × S Rng × Rng
38 36 37 mp1i φ RngHomo S × S Fn S × S S × S Rng × Rng
39 35 38 mpbird φ RngHomo S × S Fn S × S
40 incom Rng U = U Rng
41 inex1g U V U Rng V
42 40 41 eqeltrid U V Rng U V
43 1 42 syl φ Rng U V
44 3 43 eqeltrd φ S V
45 31 39 44 isssc φ RingHom R × R cat RngHomo S × S R S x R y R x RingHom R × R y x RngHomo S × S y
46 8 23 45 mpbir2and φ RingHom R × R cat RngHomo S × S