Metamath Proof Explorer


Theorem rhmisrnghm

Description: Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020)

Ref Expression
Assertion rhmisrnghm FRRingHomSFRRngHomS

Proof

Step Hyp Ref Expression
1 ringrng RRingRRng
2 ringrng SRingSRng
3 1 2 anim12i RRingSRingRRngSRng
4 mhmismgmhm FmulGrpRMndHommulGrpSFmulGrpRMgmHommulGrpS
5 4 anim2i FRGrpHomSFmulGrpRMndHommulGrpSFRGrpHomSFmulGrpRMgmHommulGrpS
6 3 5 anim12i RRingSRingFRGrpHomSFmulGrpRMndHommulGrpSRRngSRngFRGrpHomSFmulGrpRMgmHommulGrpS
7 eqid mulGrpR=mulGrpR
8 eqid mulGrpS=mulGrpS
9 7 8 isrhm FRRingHomSRRingSRingFRGrpHomSFmulGrpRMndHommulGrpS
10 7 8 isrnghmmul FRRngHomSRRngSRngFRGrpHomSFmulGrpRMgmHommulGrpS
11 6 9 10 3imtr4i FRRingHomSFRRngHomS