Metamath Proof Explorer


Theorem rhmisrnghm

Description: Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020)

Ref Expression
Assertion rhmisrnghm F R RingHom S F R RngHomo S

Proof

Step Hyp Ref Expression
1 ringrng R Ring R Rng
2 ringrng S Ring S Rng
3 1 2 anim12i R Ring S Ring R Rng S Rng
4 mhmismgmhm F mulGrp R MndHom mulGrp S F mulGrp R MgmHom mulGrp S
5 4 anim2i F R GrpHom S F mulGrp R MndHom mulGrp S F R GrpHom S F mulGrp R MgmHom mulGrp S
6 3 5 anim12i R Ring S Ring F R GrpHom S F mulGrp R MndHom mulGrp S R Rng S Rng F R GrpHom S F mulGrp R MgmHom mulGrp S
7 eqid mulGrp R = mulGrp R
8 eqid mulGrp S = mulGrp S
9 7 8 isrhm F R RingHom S R Ring S Ring F R GrpHom S F mulGrp R MndHom mulGrp S
10 7 8 isrnghmmul F R RngHomo S R Rng S Rng F R GrpHom S F mulGrp R MgmHom mulGrp S
11 6 9 10 3imtr4i F R RingHom S F R RngHomo S