Metamath Proof Explorer


Theorem mhmismgmhm

Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020)

Ref Expression
Assertion mhmismgmhm FRMndHomSFRMgmHomS

Proof

Step Hyp Ref Expression
1 mndmgm RMndRMgm
2 mndmgm SMndSMgm
3 1 2 anim12i RMndSMndRMgmSMgm
4 3simpa F:BaseRBaseSxBaseRyBaseRFx+Ry=Fx+SFyF0R=0SF:BaseRBaseSxBaseRyBaseRFx+Ry=Fx+SFy
5 3 4 anim12i RMndSMndF:BaseRBaseSxBaseRyBaseRFx+Ry=Fx+SFyF0R=0SRMgmSMgmF:BaseRBaseSxBaseRyBaseRFx+Ry=Fx+SFy
6 eqid BaseR=BaseR
7 eqid BaseS=BaseS
8 eqid +R=+R
9 eqid +S=+S
10 eqid 0R=0R
11 eqid 0S=0S
12 6 7 8 9 10 11 ismhm FRMndHomSRMndSMndF:BaseRBaseSxBaseRyBaseRFx+Ry=Fx+SFyF0R=0S
13 6 7 8 9 ismgmhm FRMgmHomSRMgmSMgmF:BaseRBaseSxBaseRyBaseRFx+Ry=Fx+SFy
14 5 12 13 3imtr4i FRMndHomSFRMgmHomS