Metamath Proof Explorer


Theorem mhmismgmhm

Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020)

Ref Expression
Assertion mhmismgmhm F R MndHom S F R MgmHom S

Proof

Step Hyp Ref Expression
1 mndmgm R Mnd R Mgm
2 mndmgm S Mnd S Mgm
3 1 2 anim12i R Mnd S Mnd R Mgm S Mgm
4 3simpa F : Base R Base S x Base R y Base R F x + R y = F x + S F y F 0 R = 0 S F : Base R Base S x Base R y Base R F x + R y = F x + S F y
5 3 4 anim12i R Mnd S Mnd F : Base R Base S x Base R y Base R F x + R y = F x + S F y F 0 R = 0 S R Mgm S Mgm F : Base R Base S x Base R y Base R F x + R y = F x + S F y
6 eqid Base R = Base R
7 eqid Base S = Base S
8 eqid + R = + R
9 eqid + S = + S
10 eqid 0 R = 0 R
11 eqid 0 S = 0 S
12 6 7 8 9 10 11 ismhm F R MndHom S R Mnd S Mnd F : Base R Base S x Base R y Base R F x + R y = F x + S F y F 0 R = 0 S
13 6 7 8 9 ismgmhm F R MgmHom S R Mgm S Mgm F : Base R Base S x Base R y Base R F x + R y = F x + S F y
14 5 12 13 3imtr4i F R MndHom S F R MgmHom S