Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Monoids (extension)
Magma homomorphisms and submagmas
mhmismgmhm
Next ⟩
Examples and counterexamples for magmas, semigroups and monoids (extension)
Metamath Proof Explorer
Ascii
Unicode
Theorem
mhmismgmhm
Description:
Each monoid homomorphism is a magma homomorphism.
(Contributed by
AV
, 29-Feb-2020)
Ref
Expression
Assertion
mhmismgmhm
⊢
F
∈
R
MndHom
S
→
F
∈
R
MgmHom
S
Proof
Step
Hyp
Ref
Expression
1
mndmgm
⊢
R
∈
Mnd
→
R
∈
Mgm
2
mndmgm
⊢
S
∈
Mnd
→
S
∈
Mgm
3
1
2
anim12i
⊢
R
∈
Mnd
∧
S
∈
Mnd
→
R
∈
Mgm
∧
S
∈
Mgm
4
3simpa
⊢
F
:
Base
R
⟶
Base
S
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
F
⁡
x
+
R
y
=
F
⁡
x
+
S
F
⁡
y
∧
F
⁡
0
R
=
0
S
→
F
:
Base
R
⟶
Base
S
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
F
⁡
x
+
R
y
=
F
⁡
x
+
S
F
⁡
y
5
3
4
anim12i
⊢
R
∈
Mnd
∧
S
∈
Mnd
∧
F
:
Base
R
⟶
Base
S
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
F
⁡
x
+
R
y
=
F
⁡
x
+
S
F
⁡
y
∧
F
⁡
0
R
=
0
S
→
R
∈
Mgm
∧
S
∈
Mgm
∧
F
:
Base
R
⟶
Base
S
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
F
⁡
x
+
R
y
=
F
⁡
x
+
S
F
⁡
y
6
eqid
⊢
Base
R
=
Base
R
7
eqid
⊢
Base
S
=
Base
S
8
eqid
⊢
+
R
=
+
R
9
eqid
⊢
+
S
=
+
S
10
eqid
⊢
0
R
=
0
R
11
eqid
⊢
0
S
=
0
S
12
6
7
8
9
10
11
ismhm
⊢
F
∈
R
MndHom
S
↔
R
∈
Mnd
∧
S
∈
Mnd
∧
F
:
Base
R
⟶
Base
S
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
F
⁡
x
+
R
y
=
F
⁡
x
+
S
F
⁡
y
∧
F
⁡
0
R
=
0
S
13
6
7
8
9
ismgmhm
⊢
F
∈
R
MgmHom
S
↔
R
∈
Mgm
∧
S
∈
Mgm
∧
F
:
Base
R
⟶
Base
S
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
F
⁡
x
+
R
y
=
F
⁡
x
+
S
F
⁡
y
14
5
12
13
3imtr4i
⊢
F
∈
R
MndHom
S
→
F
∈
R
MgmHom
S