Metamath Proof Explorer


Theorem mhmismgmhm

Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020)

Ref Expression
Assertion mhmismgmhm ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) )

Proof

Step Hyp Ref Expression
1 mndmgm ( 𝑅 ∈ Mnd → 𝑅 ∈ Mgm )
2 mndmgm ( 𝑆 ∈ Mnd → 𝑆 ∈ Mgm )
3 1 2 anim12i ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) )
4 3simpa ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g𝑅 ) ) = ( 0g𝑆 ) ) → ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) )
5 3 4 anim12i ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g𝑅 ) ) = ( 0g𝑆 ) ) ) → ( ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) ) )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 eqid ( +g𝑅 ) = ( +g𝑅 )
9 eqid ( +g𝑆 ) = ( +g𝑆 )
10 eqid ( 0g𝑅 ) = ( 0g𝑅 )
11 eqid ( 0g𝑆 ) = ( 0g𝑆 )
12 6 7 8 9 10 11 ismhm ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ↔ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g𝑅 ) ) = ( 0g𝑆 ) ) ) )
13 6 7 8 9 ismgmhm ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ↔ ( ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑆 ) ( 𝐹𝑦 ) ) ) ) )
14 5 12 13 3imtr4i ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) )