Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
ismgmhm.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
3 |
|
ismgmhm.p |
⊢ + = ( +g ‘ 𝑆 ) |
4 |
|
ismgmhm.q |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
5 |
|
mgmhmrcl |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
6 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = ( Base ‘ 𝑇 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = 𝐶 ) |
8 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝐵 ) |
10 |
7 9
|
oveqan12rd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) = ( 𝐶 ↑m 𝐵 ) ) |
11 |
9
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
12 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = ( +g ‘ 𝑆 ) ) |
13 |
12 3
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = + ) |
14 |
13
|
oveqd |
⊢ ( 𝑠 = 𝑆 → ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ( +g ‘ 𝑇 ) ) |
17 |
16 4
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ⨣ ) |
18 |
17
|
oveqd |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) |
19 |
15 18
|
eqeqan12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
20 |
11 19
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
21 |
11 20
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
22 |
10 21
|
rabeqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
23 |
|
df-mgmhm |
⊢ MgmHom = ( 𝑠 ∈ Mgm , 𝑡 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) } ) |
24 |
|
ovex |
⊢ ( 𝐶 ↑m 𝐵 ) ∈ V |
25 |
24
|
rabex |
⊢ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ∈ V |
26 |
22 23 25
|
ovmpoa |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) → ( 𝑆 MgmHom 𝑇 ) = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
27 |
26
|
eleq2d |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) → ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) ) |
28 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
29 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
30 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
31 |
29 30
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
32 |
28 31
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
33 |
32
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
34 |
33
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
35 |
2
|
fvexi |
⊢ 𝐶 ∈ V |
36 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
37 |
35 36
|
elmap |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) |
38 |
37
|
anbi1i |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
39 |
34 38
|
bitri |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
40 |
27 39
|
bitrdi |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) → ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
41 |
5 40
|
biadanii |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |