Step |
Hyp |
Ref |
Expression |
1 |
|
mgmhmf.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
mgmhmf.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
5 |
1 2 3 4
|
ismgmhm |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
6 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
7 |
5 6
|
sylbi |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |