Metamath Proof Explorer


Theorem mgmhmf

Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses mgmhmf.b B = Base S
mgmhmf.c C = Base T
Assertion mgmhmf F S MgmHom T F : B C

Proof

Step Hyp Ref Expression
1 mgmhmf.b B = Base S
2 mgmhmf.c C = Base T
3 eqid + S = + S
4 eqid + T = + T
5 1 2 3 4 ismgmhm F S MgmHom T S Mgm T Mgm F : B C x B y B F x + S y = F x + T F y
6 simprl S Mgm T Mgm F : B C x B y B F x + S y = F x + T F y F : B C
7 5 6 sylbi F S MgmHom T F : B C