Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Monoids (extension)
Magma homomorphisms and submagmas
mgmhmf
Next ⟩
mgmhmpropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
mgmhmf
Description:
A magma homomorphism is a function.
(Contributed by
AV
, 25-Feb-2020)
Ref
Expression
Hypotheses
mgmhmf.b
⊢
B
=
Base
S
mgmhmf.c
⊢
C
=
Base
T
Assertion
mgmhmf
⊢
F
∈
S
MgmHom
T
→
F
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
mgmhmf.b
⊢
B
=
Base
S
2
mgmhmf.c
⊢
C
=
Base
T
3
eqid
⊢
+
S
=
+
S
4
eqid
⊢
+
T
=
+
T
5
1
2
3
4
ismgmhm
⊢
F
∈
S
MgmHom
T
↔
S
∈
Mgm
∧
T
∈
Mgm
∧
F
:
B
⟶
C
∧
∀
x
∈
B
∀
y
∈
B
F
⁡
x
+
S
y
=
F
⁡
x
+
T
F
⁡
y
6
simprl
⊢
S
∈
Mgm
∧
T
∈
Mgm
∧
F
:
B
⟶
C
∧
∀
x
∈
B
∀
y
∈
B
F
⁡
x
+
S
y
=
F
⁡
x
+
T
F
⁡
y
→
F
:
B
⟶
C
7
5
6
sylbi
⊢
F
∈
S
MgmHom
T
→
F
:
B
⟶
C