Step |
Hyp |
Ref |
Expression |
1 |
|
mgmhmpropd.a |
|
2 |
|
mgmhmpropd.b |
|
3 |
|
mgmhmpropd.c |
|
4 |
|
mgmhmpropd.d |
|
5 |
|
mgmhmpropd.0 |
|
6 |
|
mgmhmpropd.C |
|
7 |
|
mgmhmpropd.e |
|
8 |
|
mgmhmpropd.f |
|
9 |
7
|
fveq2d |
|
10 |
9
|
adantlr |
|
11 |
|
ffvelrn |
|
12 |
|
ffvelrn |
|
13 |
11 12
|
anim12dan |
|
14 |
8
|
ralrimivva |
|
15 |
|
oveq1 |
|
16 |
|
oveq1 |
|
17 |
15 16
|
eqeq12d |
|
18 |
|
oveq2 |
|
19 |
|
oveq2 |
|
20 |
18 19
|
eqeq12d |
|
21 |
17 20
|
cbvral2vw |
|
22 |
14 21
|
sylib |
|
23 |
|
oveq1 |
|
24 |
|
oveq1 |
|
25 |
23 24
|
eqeq12d |
|
26 |
|
oveq2 |
|
27 |
|
oveq2 |
|
28 |
26 27
|
eqeq12d |
|
29 |
25 28
|
rspc2va |
|
30 |
13 22 29
|
syl2anr |
|
31 |
30
|
anassrs |
|
32 |
10 31
|
eqeq12d |
|
33 |
32
|
2ralbidva |
|
34 |
33
|
adantrl |
|
35 |
|
raleq |
|
36 |
35
|
raleqbi1dv |
|
37 |
1 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
|
raleq |
|
40 |
39
|
raleqbi1dv |
|
41 |
3 40
|
syl |
|
42 |
41
|
adantr |
|
43 |
34 38 42
|
3bitr3d |
|
44 |
43
|
anassrs |
|
45 |
44
|
pm5.32da |
|
46 |
1 2
|
feq23d |
|
47 |
46
|
adantr |
|
48 |
47
|
anbi1d |
|
49 |
3 4
|
feq23d |
|
50 |
49
|
adantr |
|
51 |
50
|
anbi1d |
|
52 |
45 48 51
|
3bitr3d |
|
53 |
52
|
pm5.32da |
|
54 |
1 3 5 7
|
mgmpropd |
|
55 |
2 4 6 8
|
mgmpropd |
|
56 |
54 55
|
anbi12d |
|
57 |
56
|
anbi1d |
|
58 |
53 57
|
bitrd |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
|
eqid |
|
63 |
59 60 61 62
|
ismgmhm |
|
64 |
|
eqid |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
64 65 66 67
|
ismgmhm |
|
69 |
58 63 68
|
3bitr4g |
|
70 |
69
|
eqrdv |
|