| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgmpropd.k |
|
| 2 |
|
mgmpropd.l |
|
| 3 |
|
mgmpropd.b |
|
| 4 |
|
mgmpropd.p |
|
| 5 |
|
simpl |
|
| 6 |
1
|
eqcomd |
|
| 7 |
6
|
eleq2d |
|
| 8 |
7
|
biimpcd |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
impcom |
|
| 11 |
6
|
eleq2d |
|
| 12 |
11
|
biimpd |
|
| 13 |
12
|
adantld |
|
| 14 |
13
|
imp |
|
| 15 |
5 10 14 4
|
syl12anc |
|
| 16 |
15
|
eleq1d |
|
| 17 |
16
|
2ralbidva |
|
| 18 |
1 2
|
eqtr3d |
|
| 19 |
18
|
eleq2d |
|
| 20 |
18 19
|
raleqbidv |
|
| 21 |
18 20
|
raleqbidv |
|
| 22 |
17 21
|
bitrd |
|
| 23 |
|
n0 |
|
| 24 |
1
|
eleq2d |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
25 26
|
ismgmn0 |
|
| 28 |
24 27
|
biimtrdi |
|
| 29 |
28
|
exlimdv |
|
| 30 |
23 29
|
biimtrid |
|
| 31 |
3 30
|
mpd |
|
| 32 |
2
|
eleq2d |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
33 34
|
ismgmn0 |
|
| 36 |
32 35
|
biimtrdi |
|
| 37 |
36
|
exlimdv |
|
| 38 |
23 37
|
biimtrid |
|
| 39 |
3 38
|
mpd |
|
| 40 |
22 31 39
|
3bitr4d |
|