| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgmpropd.k |  | 
						
							| 2 |  | mgmpropd.l |  | 
						
							| 3 |  | mgmpropd.b |  | 
						
							| 4 |  | mgmpropd.p |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 | 1 | eqcomd |  | 
						
							| 7 | 6 | eleq2d |  | 
						
							| 8 | 7 | biimpcd |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 9 | impcom |  | 
						
							| 11 | 6 | eleq2d |  | 
						
							| 12 | 11 | biimpd |  | 
						
							| 13 | 12 | adantld |  | 
						
							| 14 | 13 | imp |  | 
						
							| 15 | 5 10 14 4 | syl12anc |  | 
						
							| 16 | 15 | eleq1d |  | 
						
							| 17 | 16 | 2ralbidva |  | 
						
							| 18 | 1 2 | eqtr3d |  | 
						
							| 19 | 18 | eleq2d |  | 
						
							| 20 | 18 19 | raleqbidv |  | 
						
							| 21 | 18 20 | raleqbidv |  | 
						
							| 22 | 17 21 | bitrd |  | 
						
							| 23 |  | n0 |  | 
						
							| 24 | 1 | eleq2d |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 25 26 | ismgmn0 |  | 
						
							| 28 | 24 27 | biimtrdi |  | 
						
							| 29 | 28 | exlimdv |  | 
						
							| 30 | 23 29 | biimtrid |  | 
						
							| 31 | 3 30 | mpd |  | 
						
							| 32 | 2 | eleq2d |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 33 34 | ismgmn0 |  | 
						
							| 36 | 32 35 | biimtrdi |  | 
						
							| 37 | 36 | exlimdv |  | 
						
							| 38 | 23 37 | biimtrid |  | 
						
							| 39 | 3 38 | mpd |  | 
						
							| 40 | 22 31 39 | 3bitr4d |  |