Step |
Hyp |
Ref |
Expression |
1 |
|
mgmpropd.k |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
mgmpropd.l |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
mgmpropd.b |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
4 |
|
mgmpropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
5 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝜑 ) |
6 |
1
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = 𝐵 ) |
7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↔ 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
biimpcd |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐾 ) → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝜑 → 𝑥 ∈ 𝐵 ) ) |
10 |
9
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑥 ∈ 𝐵 ) |
11 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↔ 𝑦 ∈ 𝐵 ) ) |
12 |
11
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝐾 ) → 𝑦 ∈ 𝐵 ) ) |
13 |
12
|
adantld |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → 𝑦 ∈ 𝐵 ) |
15 |
5 10 14 4
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
16 |
15
|
eleq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
17 |
16
|
2ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
18 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
19 |
18
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
20 |
18 19
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
21 |
18 20
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
22 |
17 21
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
23 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝐵 ) |
24 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ( Base ‘ 𝐾 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
26 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
27 |
25 26
|
ismgmn0 |
⊢ ( 𝑎 ∈ ( Base ‘ 𝐾 ) → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
28 |
24 27
|
syl6bi |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) ) |
29 |
28
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 ∈ 𝐵 → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) ) |
30 |
23 29
|
syl5bi |
⊢ ( 𝜑 → ( 𝐵 ≠ ∅ → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) ) |
31 |
3 30
|
mpd |
⊢ ( 𝜑 → ( 𝐾 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
32 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ( Base ‘ 𝐿 ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
34 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
35 |
33 34
|
ismgmn0 |
⊢ ( 𝑎 ∈ ( Base ‘ 𝐿 ) → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
36 |
32 35
|
syl6bi |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) ) |
37 |
36
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 ∈ 𝐵 → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) ) |
38 |
23 37
|
syl5bi |
⊢ ( 𝜑 → ( 𝐵 ≠ ∅ → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) ) |
39 |
3 38
|
mpd |
⊢ ( 𝜑 → ( 𝐿 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ∈ ( Base ‘ 𝐿 ) ) ) |
40 |
22 31 39
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm ) ) |