Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
2 |
|
ismgmd.0 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
3 |
|
ismgmd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) |
4 |
|
ismgmd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
5 |
4
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
6 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
7 |
3
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
8 |
7 1
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
9 |
1 8
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
10 |
1 9
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
11 |
6 10
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
14 |
12 13
|
ismgm |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
16 |
11 15
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |