Metamath Proof Explorer


Theorem ismgmd

Description: Deduce a magma from its properties. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses ismgmd.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
ismgmd.0 ( 𝜑𝐺𝑉 )
ismgmd.p ( 𝜑+ = ( +g𝐺 ) )
ismgmd.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
Assertion ismgmd ( 𝜑𝐺 ∈ Mgm )

Proof

Step Hyp Ref Expression
1 ismgmd.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
2 ismgmd.0 ( 𝜑𝐺𝑉 )
3 ismgmd.p ( 𝜑+ = ( +g𝐺 ) )
4 ismgmd.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
5 4 3expb ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
6 5 ralrimivva ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 )
7 3 oveqd ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
8 7 1 eleq12d ( 𝜑 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) )
9 1 8 raleqbidv ( 𝜑 → ( ∀ 𝑦𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) )
10 1 9 raleqbidv ( 𝜑 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) )
11 6 10 mpbid ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
12 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
13 eqid ( +g𝐺 ) = ( +g𝐺 )
14 12 13 ismgm ( 𝐺𝑉 → ( 𝐺 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) )
15 2 14 syl ( 𝜑 → ( 𝐺 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) )
16 11 15 mpbird ( 𝜑𝐺 ∈ Mgm )