Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Monoids (extension)
Magmas, Semigroups and Monoids (extension)
ismgmd
Next ⟩
Magma homomorphisms and submagmas
Metamath Proof Explorer
Ascii
Unicode
Theorem
ismgmd
Description:
Deduce a magma from its properties.
(Contributed by
AV
, 25-Feb-2020)
Ref
Expression
Hypotheses
ismgmd.b
⊢
φ
→
B
=
Base
G
ismgmd.0
⊢
φ
→
G
∈
V
ismgmd.p
⊢
φ
→
+
˙
=
+
G
ismgmd.c
⊢
φ
∧
x
∈
B
∧
y
∈
B
→
x
+
˙
y
∈
B
Assertion
ismgmd
⊢
φ
→
G
∈
Mgm
Proof
Step
Hyp
Ref
Expression
1
ismgmd.b
⊢
φ
→
B
=
Base
G
2
ismgmd.0
⊢
φ
→
G
∈
V
3
ismgmd.p
⊢
φ
→
+
˙
=
+
G
4
ismgmd.c
⊢
φ
∧
x
∈
B
∧
y
∈
B
→
x
+
˙
y
∈
B
5
4
3expb
⊢
φ
∧
x
∈
B
∧
y
∈
B
→
x
+
˙
y
∈
B
6
5
ralrimivva
⊢
φ
→
∀
x
∈
B
∀
y
∈
B
x
+
˙
y
∈
B
7
3
oveqd
⊢
φ
→
x
+
˙
y
=
x
+
G
y
8
7
1
eleq12d
⊢
φ
→
x
+
˙
y
∈
B
↔
x
+
G
y
∈
Base
G
9
1
8
raleqbidv
⊢
φ
→
∀
y
∈
B
x
+
˙
y
∈
B
↔
∀
y
∈
Base
G
x
+
G
y
∈
Base
G
10
1
9
raleqbidv
⊢
φ
→
∀
x
∈
B
∀
y
∈
B
x
+
˙
y
∈
B
↔
∀
x
∈
Base
G
∀
y
∈
Base
G
x
+
G
y
∈
Base
G
11
6
10
mpbid
⊢
φ
→
∀
x
∈
Base
G
∀
y
∈
Base
G
x
+
G
y
∈
Base
G
12
eqid
⊢
Base
G
=
Base
G
13
eqid
⊢
+
G
=
+
G
14
12
13
ismgm
⊢
G
∈
V
→
G
∈
Mgm
↔
∀
x
∈
Base
G
∀
y
∈
Base
G
x
+
G
y
∈
Base
G
15
2
14
syl
⊢
φ
→
G
∈
Mgm
↔
∀
x
∈
Base
G
∀
y
∈
Base
G
x
+
G
y
∈
Base
G
16
11
15
mpbird
⊢
φ
→
G
∈
Mgm