Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issstrmgm.b | |
|
issstrmgm.p | |
||
issstrmgm.h | |
||
Assertion | issstrmgm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issstrmgm.b | |
|
2 | issstrmgm.p | |
|
3 | issstrmgm.h | |
|
4 | simplr | |
|
5 | simplr | |
|
6 | 3 1 | ressbas2 | |
7 | 5 6 | syl | |
8 | 7 | eleq2d | |
9 | 8 | biimpcd | |
10 | 9 | adantr | |
11 | 10 | impcom | |
12 | 7 | eleq2d | |
13 | 12 | biimpcd | |
14 | 13 | adantl | |
15 | 14 | impcom | |
16 | eqid | |
|
17 | eqid | |
|
18 | 16 17 | mgmcl | |
19 | 4 11 15 18 | syl3anc | |
20 | 1 | fvexi | |
21 | 20 | ssex | |
22 | 21 | adantl | |
23 | 3 2 | ressplusg | |
24 | 22 23 | syl | |
25 | 24 | adantr | |
26 | 25 | oveqdr | |
27 | 7 | adantr | |
28 | 19 26 27 | 3eltr4d | |
29 | 28 | ralrimivva | |
30 | 6 | adantl | |
31 | 24 | oveqd | |
32 | 31 30 | eleq12d | |
33 | 30 32 | raleqbidv | |
34 | 30 33 | raleqbidv | |
35 | 34 | biimpa | |
36 | 16 17 | ismgm | |
37 | 36 | ad2antrr | |
38 | 35 37 | mpbird | |
39 | 29 38 | impbida | |