Metamath Proof Explorer


Theorem issstrmgm

Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021)

Ref Expression
Hypotheses issstrmgm.b B=BaseG
issstrmgm.p +˙=+G
issstrmgm.h H=G𝑠S
Assertion issstrmgm HVSBHMgmxSySx+˙yS

Proof

Step Hyp Ref Expression
1 issstrmgm.b B=BaseG
2 issstrmgm.p +˙=+G
3 issstrmgm.h H=G𝑠S
4 simplr HVSBHMgmxSySHMgm
5 simplr HVSBHMgmSB
6 3 1 ressbas2 SBS=BaseH
7 5 6 syl HVSBHMgmS=BaseH
8 7 eleq2d HVSBHMgmxSxBaseH
9 8 biimpcd xSHVSBHMgmxBaseH
10 9 adantr xSySHVSBHMgmxBaseH
11 10 impcom HVSBHMgmxSySxBaseH
12 7 eleq2d HVSBHMgmySyBaseH
13 12 biimpcd ySHVSBHMgmyBaseH
14 13 adantl xSySHVSBHMgmyBaseH
15 14 impcom HVSBHMgmxSySyBaseH
16 eqid BaseH=BaseH
17 eqid +H=+H
18 16 17 mgmcl HMgmxBaseHyBaseHx+HyBaseH
19 4 11 15 18 syl3anc HVSBHMgmxSySx+HyBaseH
20 1 fvexi BV
21 20 ssex SBSV
22 21 adantl HVSBSV
23 3 2 ressplusg SV+˙=+H
24 22 23 syl HVSB+˙=+H
25 24 adantr HVSBHMgm+˙=+H
26 25 oveqdr HVSBHMgmxSySx+˙y=x+Hy
27 7 adantr HVSBHMgmxSySS=BaseH
28 19 26 27 3eltr4d HVSBHMgmxSySx+˙yS
29 28 ralrimivva HVSBHMgmxSySx+˙yS
30 6 adantl HVSBS=BaseH
31 24 oveqd HVSBx+˙y=x+Hy
32 31 30 eleq12d HVSBx+˙ySx+HyBaseH
33 30 32 raleqbidv HVSBySx+˙ySyBaseHx+HyBaseH
34 30 33 raleqbidv HVSBxSySx+˙ySxBaseHyBaseHx+HyBaseH
35 34 biimpa HVSBxSySx+˙ySxBaseHyBaseHx+HyBaseH
36 16 17 ismgm HVHMgmxBaseHyBaseHx+HyBaseH
37 36 ad2antrr HVSBxSySx+˙ySHMgmxBaseHyBaseHx+HyBaseH
38 35 37 mpbird HVSBxSySx+˙ySHMgm
39 29 38 impbida HVSBHMgmxSySx+˙yS