Metamath Proof Explorer


Theorem issstrmgm

Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021)

Ref Expression
Hypotheses issstrmgm.b 𝐵 = ( Base ‘ 𝐺 )
issstrmgm.p + = ( +g𝐺 )
issstrmgm.h 𝐻 = ( 𝐺s 𝑆 )
Assertion issstrmgm ( ( 𝐻𝑉𝑆𝐵 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 issstrmgm.b 𝐵 = ( Base ‘ 𝐺 )
2 issstrmgm.p + = ( +g𝐺 )
3 issstrmgm.h 𝐻 = ( 𝐺s 𝑆 )
4 simplr ( ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → 𝐻 ∈ Mgm )
5 simplr ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆𝐵 )
6 3 1 ressbas2 ( 𝑆𝐵𝑆 = ( Base ‘ 𝐻 ) )
7 5 6 syl ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆 = ( Base ‘ 𝐻 ) )
8 7 eleq2d ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( 𝑥𝑆𝑥 ∈ ( Base ‘ 𝐻 ) ) )
9 8 biimpcd ( 𝑥𝑆 → ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) )
10 9 adantr ( ( 𝑥𝑆𝑦𝑆 ) → ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) )
11 10 impcom ( ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) )
12 7 eleq2d ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( 𝑦𝑆𝑦 ∈ ( Base ‘ 𝐻 ) ) )
13 12 biimpcd ( 𝑦𝑆 → ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) )
14 13 adantl ( ( 𝑥𝑆𝑦𝑆 ) → ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) )
15 14 impcom ( ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) )
16 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
17 eqid ( +g𝐻 ) = ( +g𝐻 )
18 16 17 mgmcl ( ( 𝐻 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) )
19 4 11 15 18 syl3anc ( ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) )
20 1 fvexi 𝐵 ∈ V
21 20 ssex ( 𝑆𝐵𝑆 ∈ V )
22 21 adantl ( ( 𝐻𝑉𝑆𝐵 ) → 𝑆 ∈ V )
23 3 2 ressplusg ( 𝑆 ∈ V → + = ( +g𝐻 ) )
24 22 23 syl ( ( 𝐻𝑉𝑆𝐵 ) → + = ( +g𝐻 ) )
25 24 adantr ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → + = ( +g𝐻 ) )
26 25 oveqdr ( ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g𝐻 ) 𝑦 ) )
27 7 adantr ( ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) )
28 19 26 27 3eltr4d ( ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 )
29 28 ralrimivva ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ 𝐻 ∈ Mgm ) → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 )
30 6 adantl ( ( 𝐻𝑉𝑆𝐵 ) → 𝑆 = ( Base ‘ 𝐻 ) )
31 24 oveqd ( ( 𝐻𝑉𝑆𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g𝐻 ) 𝑦 ) )
32 31 30 eleq12d ( ( 𝐻𝑉𝑆𝐵 ) → ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) )
33 30 32 raleqbidv ( ( 𝐻𝑉𝑆𝐵 ) → ( ∀ 𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) )
34 30 33 raleqbidv ( ( 𝐻𝑉𝑆𝐵 ) → ( ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) )
35 34 biimpa ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) )
36 16 17 ismgm ( 𝐻𝑉 → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) )
37 36 ad2antrr ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) )
38 35 37 mpbird ( ( ( 𝐻𝑉𝑆𝐵 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ Mgm )
39 29 38 impbida ( ( 𝐻𝑉𝑆𝐵 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) )