Step |
Hyp |
Ref |
Expression |
1 |
|
mgmhmpropd.a |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) |
2 |
|
mgmhmpropd.b |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) |
3 |
|
mgmhmpropd.c |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
4 |
|
mgmhmpropd.d |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) |
5 |
|
mgmhmpropd.0 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
6 |
|
mgmhmpropd.C |
⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
7 |
|
mgmhmpropd.e |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
8 |
|
mgmhmpropd.f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
9 |
7
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
10 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
11 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) |
12 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) |
13 |
11 12
|
anim12dan |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ) |
14 |
8
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
21 |
17 20
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
22 |
14 21
|
sylib |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) ) |
24 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) |
27 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
29 |
25 28
|
rspc2va |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) = ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
30 |
13 22 29
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
31 |
30
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) |
32 |
10 31
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
33 |
32
|
2ralbidva |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
34 |
33
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
35 |
|
raleq |
⊢ ( 𝐵 = ( Base ‘ 𝐽 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
36 |
35
|
raleqbi1dv |
⊢ ( 𝐵 = ( Base ‘ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
37 |
1 36
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
39 |
|
raleq |
⊢ ( 𝐵 = ( Base ‘ 𝐿 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
40 |
39
|
raleqbi1dv |
⊢ ( 𝐵 = ( Base ‘ 𝐿 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
41 |
3 40
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
43 |
34 38 42
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
44 |
43
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) ∧ 𝑓 : 𝐵 ⟶ 𝐶 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
45 |
44
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
46 |
1 2
|
feq23d |
⊢ ( 𝜑 → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
48 |
47
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
49 |
3 4
|
feq23d |
⊢ ( 𝜑 → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( 𝑓 : 𝐵 ⟶ 𝐶 ↔ 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) |
51 |
50
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
52 |
45 48 51
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ) → ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
53 |
52
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
54 |
1 3 5 7
|
mgmpropd |
⊢ ( 𝜑 → ( 𝐽 ∈ Mgm ↔ 𝐿 ∈ Mgm ) ) |
55 |
2 4 6 8
|
mgmpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Mgm ↔ 𝑀 ∈ Mgm ) ) |
56 |
54 55
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ↔ ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ) ) |
57 |
56
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
58 |
53 57
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
59 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
60 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
61 |
|
eqid |
⊢ ( +g ‘ 𝐽 ) = ( +g ‘ 𝐽 ) |
62 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
63 |
59 60 61 62
|
ismgmhm |
⊢ ( 𝑓 ∈ ( 𝐽 MgmHom 𝐾 ) ↔ ( ( 𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ∀ 𝑦 ∈ ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
64 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
65 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
66 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
67 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
68 |
64 65 66 67
|
ismgmhm |
⊢ ( 𝑓 ∈ ( 𝐿 MgmHom 𝑀 ) ↔ ( ( 𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm ) ∧ ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
69 |
58 63 68
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 MgmHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 MgmHom 𝑀 ) ) ) |
70 |
69
|
eqrdv |
⊢ ( 𝜑 → ( 𝐽 MgmHom 𝐾 ) = ( 𝐿 MgmHom 𝑀 ) ) |