Step |
Hyp |
Ref |
Expression |
1 |
|
mgmhmlin.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
mgmhmlin.p |
⊢ + = ( +g ‘ 𝑆 ) |
3 |
|
mgmhmlin.q |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
5 |
1 4 2 3
|
ismgmhm |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
6 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) |
14 |
11 13
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ ( 𝑋 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
15 |
9 14
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
16 |
15
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
17 |
16
|
ad2antll |
⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
18 |
5 17
|
sylbi |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) ) |
19 |
18
|
3impib |
⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) ) |