Metamath Proof Explorer


Theorem mgmhmf1o

Description: A magma homomorphism is bijective iff its converse is also a magma homomorphism. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses mgmhmf1o.b 𝐵 = ( Base ‘ 𝑅 )
mgmhmf1o.c 𝐶 = ( Base ‘ 𝑆 )
Assertion mgmhmf1o ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝐹 : 𝐵1-1-onto𝐶 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 mgmhmf1o.b 𝐵 = ( Base ‘ 𝑅 )
2 mgmhmf1o.c 𝐶 = ( Base ‘ 𝑆 )
3 mgmhmrcl ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) )
4 3 ancomd ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) )
5 4 adantr ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) → ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) )
6 f1ocnv ( 𝐹 : 𝐵1-1-onto𝐶 𝐹 : 𝐶1-1-onto𝐵 )
7 6 adantl ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) → 𝐹 : 𝐶1-1-onto𝐵 )
8 f1of ( 𝐹 : 𝐶1-1-onto𝐵 𝐹 : 𝐶𝐵 )
9 7 8 syl ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) → 𝐹 : 𝐶𝐵 )
10 simpll ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) )
11 9 adantr ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → 𝐹 : 𝐶𝐵 )
12 simprl ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → 𝑥𝐶 )
13 11 12 ffvelrnd ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( 𝐹𝑥 ) ∈ 𝐵 )
14 simprr ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → 𝑦𝐶 )
15 11 14 ffvelrnd ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( 𝐹𝑦 ) ∈ 𝐵 )
16 eqid ( +g𝑅 ) = ( +g𝑅 )
17 eqid ( +g𝑆 ) = ( +g𝑆 )
18 1 16 17 mgmhmlin ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ( 𝐹𝑥 ) ∈ 𝐵 ∧ ( 𝐹𝑦 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) ( +g𝑆 ) ( 𝐹 ‘ ( 𝐹𝑦 ) ) ) )
19 10 13 15 18 syl3anc ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) ( +g𝑆 ) ( 𝐹 ‘ ( 𝐹𝑦 ) ) ) )
20 simplr ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → 𝐹 : 𝐵1-1-onto𝐶 )
21 f1ocnvfv2 ( ( 𝐹 : 𝐵1-1-onto𝐶𝑥𝐶 ) → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = 𝑥 )
22 20 12 21 syl2anc ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( 𝐹 ‘ ( 𝐹𝑥 ) ) = 𝑥 )
23 f1ocnvfv2 ( ( 𝐹 : 𝐵1-1-onto𝐶𝑦𝐶 ) → ( 𝐹 ‘ ( 𝐹𝑦 ) ) = 𝑦 )
24 20 14 23 syl2anc ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( 𝐹 ‘ ( 𝐹𝑦 ) ) = 𝑦 )
25 22 24 oveq12d ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑥 ) ) ( +g𝑆 ) ( 𝐹 ‘ ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑆 ) 𝑦 ) )
26 19 25 eqtrd ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑆 ) 𝑦 ) )
27 3 simpld ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → 𝑅 ∈ Mgm )
28 27 adantr ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) → 𝑅 ∈ Mgm )
29 28 adantr ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → 𝑅 ∈ Mgm )
30 1 16 mgmcl ( ( 𝑅 ∈ Mgm ∧ ( 𝐹𝑥 ) ∈ 𝐵 ∧ ( 𝐹𝑦 ) ∈ 𝐵 ) → ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ∈ 𝐵 )
31 29 13 15 30 syl3anc ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ∈ 𝐵 )
32 f1ocnvfv ( ( 𝐹 : 𝐵1-1-onto𝐶 ∧ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑆 ) 𝑦 ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) )
33 20 31 32 syl2anc ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( ( 𝐹 ‘ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) = ( 𝑥 ( +g𝑆 ) 𝑦 ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) )
34 26 33 mpd ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) ∧ ( 𝑥𝐶𝑦𝐶 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) )
35 34 ralrimivva ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) → ∀ 𝑥𝐶𝑦𝐶 ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) )
36 9 35 jca ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) → ( 𝐹 : 𝐶𝐵 ∧ ∀ 𝑥𝐶𝑦𝐶 ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) )
37 2 1 17 16 ismgmhm ( 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) ∧ ( 𝐹 : 𝐶𝐵 ∧ ∀ 𝑥𝐶𝑦𝐶 ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( 𝐹𝑦 ) ) ) ) )
38 5 36 37 sylanbrc ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵1-1-onto𝐶 ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) )
39 1 2 mgmhmf ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → 𝐹 : 𝐵𝐶 )
40 39 adantr ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 : 𝐵𝐶 )
41 40 ffnd ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 Fn 𝐵 )
42 2 1 mgmhmf ( 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) → 𝐹 : 𝐶𝐵 )
43 42 adantl ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 : 𝐶𝐵 )
44 43 ffnd ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 Fn 𝐶 )
45 dff1o4 ( 𝐹 : 𝐵1-1-onto𝐶 ↔ ( 𝐹 Fn 𝐵 𝐹 Fn 𝐶 ) )
46 41 44 45 sylanbrc ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 : 𝐵1-1-onto𝐶 )
47 38 46 impbida ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝐹 : 𝐵1-1-onto𝐶 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) )