Step |
Hyp |
Ref |
Expression |
1 |
|
mgmhmf1o.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
mgmhmf1o.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
mgmhmrcl |
⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ) |
4 |
3
|
ancomd |
⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) ) |
6 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) |
8 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
10 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ) |
11 |
9
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
12 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) |
13 |
11 12
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
14 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) |
15 |
11 14
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
18 |
1 16 17
|
mgmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
19 |
10 13 15 18
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
20 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
21 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
22 |
20 12 21
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
23 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
24 |
20 14 23
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
25 |
22 24
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
26 |
19 25
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
27 |
3
|
simpld |
⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → 𝑅 ∈ Mgm ) |
28 |
27
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝑅 ∈ Mgm ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑅 ∈ Mgm ) |
30 |
1 16
|
mgmcl |
⊢ ( ( 𝑅 ∈ Mgm ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
31 |
29 13 15 30
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
32 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
33 |
20 31 32
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
34 |
26 33
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
35 |
34
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
36 |
9 35
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
37 |
2 1 17 16
|
ismgmhm |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm ) ∧ ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) ) |
38 |
5 36 37
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) |
39 |
1 2
|
mgmhmf |
⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
40 |
39
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
41 |
40
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 Fn 𝐵 ) |
42 |
2 1
|
mgmhmf |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
43 |
42
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
44 |
43
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → ◡ 𝐹 Fn 𝐶 ) |
45 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn 𝐶 ) ) |
46 |
41 44 45
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
47 |
38 46
|
impbida |
⊢ ( 𝐹 ∈ ( 𝑅 MgmHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 MgmHom 𝑅 ) ) ) |