Metamath Proof Explorer


Theorem mgmhmrcl

Description: Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020)

Ref Expression
Assertion mgmhmrcl ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) )

Proof

Step Hyp Ref Expression
1 df-mgmhm MgmHom = ( 𝑠 ∈ Mgm , 𝑡 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑡 ) ( 𝑓𝑦 ) ) } )
2 1 elmpocl ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) )