Metamath Proof Explorer


Theorem submgmrcl

Description: Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020)

Ref Expression
Assertion submgmrcl ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ Mgm )

Proof

Step Hyp Ref Expression
1 df-submgm SubMgm = ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥𝑡𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡 } )
2 1 dmmptss dom SubMgm ⊆ Mgm
3 elfvdm ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ dom SubMgm )
4 2 3 sseldi ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ Mgm )