Metamath Proof Explorer


Definition df-submgm

Description: A submagma is a subset of a magma which is closed under the operation. Such subsets are themselves magmas. (Contributed by AV, 24-Feb-2020)

Ref Expression
Assertion df-submgm SubMgm = ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥𝑡𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csubmgm SubMgm
1 vs 𝑠
2 cmgm Mgm
3 vt 𝑡
4 cbs Base
5 1 cv 𝑠
6 5 4 cfv ( Base ‘ 𝑠 )
7 6 cpw 𝒫 ( Base ‘ 𝑠 )
8 vx 𝑥
9 3 cv 𝑡
10 vy 𝑦
11 8 cv 𝑥
12 cplusg +g
13 5 12 cfv ( +g𝑠 )
14 10 cv 𝑦
15 11 14 13 co ( 𝑥 ( +g𝑠 ) 𝑦 )
16 15 9 wcel ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡
17 16 10 9 wral 𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡
18 17 8 9 wral 𝑥𝑡𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡
19 18 3 7 crab { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥𝑡𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡 }
20 1 2 19 cmpt ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥𝑡𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡 } )
21 0 20 wceq SubMgm = ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥𝑡𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡 } )