Step |
Hyp |
Ref |
Expression |
0 |
|
csubmgm |
⊢ SubMgm |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cmgm |
⊢ Mgm |
3 |
|
vt |
⊢ 𝑡 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑠 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑠 ) |
8 |
|
vx |
⊢ 𝑥 |
9 |
3
|
cv |
⊢ 𝑡 |
10 |
|
vy |
⊢ 𝑦 |
11 |
8
|
cv |
⊢ 𝑥 |
12 |
|
cplusg |
⊢ +g |
13 |
5 12
|
cfv |
⊢ ( +g ‘ 𝑠 ) |
14 |
10
|
cv |
⊢ 𝑦 |
15 |
11 14 13
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
16 |
15 9
|
wcel |
⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
17 |
16 10 9
|
wral |
⊢ ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
18 |
17 8 9
|
wral |
⊢ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
19 |
18 3 7
|
crab |
⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 } |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 } ) |
21 |
0 20
|
wceq |
⊢ SubMgm = ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 } ) |