Metamath Proof Explorer


Theorem mgmhmrcl

Description: Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020)

Ref Expression
Assertion mgmhmrcl F S MgmHom T S Mgm T Mgm

Proof

Step Hyp Ref Expression
1 df-mgmhm MgmHom = s Mgm , t Mgm f Base t Base s | x Base s y Base s f x + s y = f x + t f y
2 1 elmpocl F S MgmHom T S Mgm T Mgm